Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1.

نویسندگان

  • Isaam Ben Sahra
  • Claire Regazzetti
  • Guillaume Robert
  • Kathiane Laurent
  • Yannick Le Marchand-Brustel
  • Patrick Auberger
  • Jean-François Tanti
  • Sophie Giorgetti-Peraldi
  • Frédéric Bost
چکیده

Metformin is a widely prescribed antidiabetic drug associated with a reduced risk of cancer. Many studies show that metformin inhibits cancer cell viability through the inhibition of mTOR. We recently showed that antiproliferative action of metformin in prostate cancer cell lines is not mediated by AMP-activated protein kinase (AMPK). We identified REDD1 (also known as DDIT4 and RTP801), a negative regulator of mTOR, as a new molecular target of metformin. We show that metformin increases REDD1 expression in a p53-dependent manner. REDD1 invalidation, using siRNA or REDD1(-/-) cells, abrogates metformin inhibition of mTOR. Importantly, inhibition of REDD1 reverses metformin-induced cell-cycle arrest and significantly protects from the deleterious effects of metformin on cell transformation. Finally, we show the contribution of p53 in mediating metformin action in prostate cancer cells. These results highlight the p53/REDD1 axis as a new molecular target in anticancer therapy in response to metformin treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metformin Inhibits Growth of Human Glioblastoma Cells and Enhances Therapeutic Response

High-grade gliomas, glioblastomas (GB), are refractory to conventional treatment combining surgery, chemotherapy, mainly temozolomide, and radiotherapy. This highlights an urgent need to develop novel therapies and increase the efficacy of radio/chemotherapy for these very aggressive and malignant brain tumors. Recently, tumor metabolism became an interesting potential therapeutic target in var...

متن کامل

Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways

BACKGROUND Metformin is a commonly used drug for the treatment of diabetes. Accumulating evidence suggests that it exerts anti-tumor effects in many cancers, including multiple myeloma (MM); however, the underlying molecular mechanisms have not been clearly elucidated. METHODS The anti-myeloma effects of metformin were evaluated using human MM cell lines (RPMI8226 and U266) in vitro and in vi...

متن کامل

Mechanism of Activation of AMPK and Upregulation of OGG1 by Rapamycin in Cancer Cells

AMPK is a physiological cellular energy sensor that is activated by phosphorylation at Thr172 in response to changes in cellular ATP levels. AMPK has been recognized as an important upstream signaling intermediate intimately involved in the regulation of the mTOR pathway [1]. AMPK responds to energy stress by suppressing cell growth and biosynthetic processes, in part through its inhibition of ...

متن کامل

Metformin: A possible drug for treatment of endometrial cancer

Metformin is a widely used first-line drug for treatment of type 2 diabetes mellitus. In recent years, it has been reported that administration of metformin can reduce carcinogenic risk and inhibit proliferation of cancer cells including those from glioma and breast cancer. The underlying mechanism is thought to involve increased LKB-1 phosphorylation induced by metformin, followed by LKB-1 pho...

متن کامل

Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK.

The multifunctional AMPK-activated protein kinase (AMPK) is an evolutionarily conserved energy sensor that plays an important role in cell proliferation, growth, and survival. It remains unclear whether AMPK functions as a tumor suppressor or a contextual oncogene. This is because although on one hand active AMPK inhibits mammalian target of rapamycin (mTOR) and lipogenesis--two crucial arms of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 71 13  شماره 

صفحات  -

تاریخ انتشار 2011